Effects of extreme magnetic quadrupole fields on penning traps and the consequences for antihydrogen trapping.
نویسندگان
چکیده
Measurements on electrons confined in a Penning trap show that extreme quadrupole fields destroy particle confinement. Much of the particle loss comes from the hitherto unrecognized ballistic transport of particles directly into the wall. The measurements scale to the parameter regime used by ATHENA and ATRAP to create antihydrogen, and suggest that quadrupoles cannot be used to trap antihydrogen.
منابع مشابه
Quadrupole-induced resonant-particle transport in a pure electron plasma.
Small transverse magnetic quadrupole fields sharply degrade the confinement of non-neutral plasmas held in Malmberg-Penning traps. For example, a quadrupole magnetic field of only 0.02 G/cm doubles the diffusion rate in a trap with a 100 G axial magnetic field. Larger quadrupole fields noticeably change the shape of the plasma. The transport is greatest at an orbital resonance. These results ca...
متن کاملSimulations of plasma confinement in an antihydrogen trap
The three-dimensional particle-in-cell 3-D PIC simulation code WARP is used to study positron confinement in antihydrogen traps. The magnetic geometry is close to that of a UC Berkeley experiment conducted, with electrons, as part of the ALPHA collaboration W. Bertsche et al., AIP Conf. Proc. 796, 301 2005 . In order to trap antihydrogen atoms, multipole magnetic fields are added to a conventio...
متن کاملFormation of Antihydrogen Rydberg atoms in strong magnetic field traps
It is shown that several features of antihydrogen production in nested Penning traps can be described with accurate and efficient Monte Carlo simulations. It is found that cold deeply-bound Rydberg states of antihydrogen (H̄ ) are produced in three-body capture in the ATRAP experiments and an additional formation mechanism -Rydberg charge transfer-, particular to the nested Penning trap geometry...
متن کاملAntihydrogen production within a Penning-Ioffe trap.
Slow antihydrogen (H) is produced within a Penning trap that is located within a quadrupole Ioffe trap, the latter intended to ultimately confine extremely cold, ground-state H[over ] atoms. Observed H[over ] atoms in this configuration resolve a debate about whether positrons and antiprotons can be brought together to form atoms within the divergent magnetic fields of a quadrupole Ioffe trap. ...
متن کاملAntiproton confinement in a Penning-Ioffe trap for antihydrogen.
Antiprotons (p[over]) remain confined in a Penning trap, in sufficient numbers to form antihydrogen (H[over ) atoms via charge exchange, when the radial field of a quadrupole Ioffe trap is added. This first demonstration with p[over] suggests that quadrupole Ioffe traps can be superimposed upon p[over] and e(+) traps to attempt the capture of H[over] atoms as they form, contrary to conclusions ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 95 15 شماره
صفحات -
تاریخ انتشار 2005